
BRITISH MATHEMATICAL OLYMPIAD

Round 1 : Wednesday 13th January 1993

Time allowed Three and a half hours.

Instructions • Full written solutions are required. Marks awarded
will depend on the clarity of your mathematical
presentation. Work in rough first, and then draft
your final version carefully before writing up your
best attempt. Do not hand in rough work.

• One complete solution will gain far more credit
than several unfinished attempts. It is more
important to complete a small number of questions
than to try all five problems.

• Each question carries 10 marks.

• The use of rulers and compasses is allowed, but
calculators are forbidden.

• Start each question on a fresh sheet of paper. Write
on one side of the paper only. On each sheet of
working write the number of the question in the
top left hand corner and your name, initials and
school in the top right hand corner.

• Complete the cover sheet provided and attach it to
the front of your script, followed by the questions
1,2,3,4,5 in order.

• Staple all the pages neatly together in the top left
hand corner.

Do not turn over until told to do so.

BRITISH MATHEMATICAL OLYMPIAD

1. Find, showing your method, a six-digit integer n with the
following properties: (i) n is a perfect square, (ii) the
number formed by the last three digits of n is exactly one
greater than the number formed by the first three digits
of n. (Thus n might look like 123124, although this is not
a square.)

2. A square piece of toast ABCD of side length 1 and centre O
is cut in half to form two equal pieces ABC and CDA. If the
triangle ABC has to be cut into two parts of equal area, one
would usually cut along the line of symmetry BO. However,
there are other ways of doing this. Find, with justification,
the length and location of the shortest straight cut which
divides the triangle ABC into two parts of equal area.

3. For each positive integer c, the sequence un of integers is
defined by

u1 = 1, u2 = c, un = (2n+1)un−1−(n2−1)un−2, (n ≥ 3).

For which values of c does this sequence have the property
that ui divides uj whenever i ≤ j?
(Note: If x and y are integers, then x divides y if and only
if there exists an integer z such that y = xz. For example,
x = 4 divides y = −12, since we can take z = −3.)

4. Two circles touch internally at M . A straight line touches
the inner circle at P and cuts the outer circle at Q and R.
Prove that " QMP = " RMP .

5. Let x, y, z be positive real numbers satisfying
1

3
≤ xy + yz + zx ≤ 3.

Determine the range of values for (i) xyz, and (ii) x+ y+ z.


